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Data Types
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https://creativecommons.org/licenses/by-sa/3.0/


Data Exploration



1. Introduction to Regression Analysis

• What is Regression? 
• Method for exploring the 

relationship between two 
continuous variables.



1. Introduction to Regression Analysis

• What is Regression? 
• Method for exploring the 

relationship between two 
continuous variables.

• The predictor variable, X predicts 
the response of the response 
variable, Y.

• The regression line is the “best 
fit”



1. Introduction to Regression Analysis

• Example: Genetic diversity vs. 
geographic distance from 
Africa (Prugnolle et al., 2005)



1. Introduction to 
Regression Analysis

• Regression noun
• Why the term “Regression”?

• Historical context from 
Francis Galton’s work on 
height between fathers and 
sons (regression toward 
mediocrity)

https://www.britannica.com/biography/Francis
-Galton

Significance, Volume: 8, Issue: 3, Pages: 124-126, First published: 25 August 2011, DOI: (10.1111/j.1740-

9713.2011.00509.x) 



2. Types of Regression Models

Simple Linear Regression

• Model the relationship 
between a predictor variable, 
X, and a response variable, Y.

 

Multiple Linear Regression
• The average value of the 

response variable, Y, is 
assumed to be a linear 
combination of the predictor 
variables, X1, X2, …, Xn

𝑌𝑖 =  𝛼 +  𝛽𝑋𝑖 +  𝜀𝑖 
𝑌𝑖 =  𝛼 +  𝛽1𝑋1,𝑖 + 𝛽2𝑋2,𝑖 + ⋯ + 𝛽𝑛𝑋𝑛,𝑖 +  𝜀𝑖 

𝜀𝑖 ~𝑁(0, 𝜎2) 𝜀𝑖 ~𝑁(0, 𝜎2)



𝑌𝑖 =  𝛼 +  𝛽1𝑋1,𝑖 + 𝛽2𝑋2,𝑖
2 +  𝜀𝑖 

𝑌𝑖 =  𝛼 +  𝛽1𝑋1,𝑖 +  𝛽2𝑋2,𝑖
2 + 𝛽2𝑋3,𝑖

3 + 𝛽𝑛𝑋𝑛,𝑖
𝑛 +  𝜀𝑖 

Quadratic Regression:

Polynomial Regression:

2. Types of Regression Models



3. Simple Linear Regression Components

𝑌𝑖 =  𝛼 +  𝛽𝑋𝑖 + 𝜀𝑖 

Response Variable
Intercept

Residual 
Error

Predictor Variable

Slope



Linear Model

𝑌𝑖 =  𝛼 +  𝛽𝑋𝑖 +  𝜀𝑖 𝜀𝑖 ~𝑁(0, 𝜎2)

𝑦1 =  𝛼 +  𝛽𝑥1 +  𝜀1 𝜀1 ~𝑁(0, 𝜎2)
𝑦2 =  𝛼 +  𝛽𝑥2  +  𝜀2 𝜀2 ~𝑁(0, 𝜎2)
⋮
𝑦𝑛 =  𝛼 +  𝛽𝑥𝑛 +  𝜀𝑛 𝜀3 ~𝑁(0, 𝜎2)

Equations for each observation



y1

y2

y3

…

yn

Y =
X =α

β
β =

ε1

ε2

ε3

…

εn

ε =

1 x1

1 x2

1 x3

1 …

1 xn

𝒀 = 𝜷𝐗 +  𝜺

Multiply matrix X by vector β

Response 
Vector

Design 
Matrix

Vector of 
Parameters

Error 
Vector

Linear Model



y1

y2

y3

…

yn

Y = βX =

ε1

ε2

ε3

…

εn

ε =

𝐘 = 𝜷𝐗 +  𝜺

α   + β ∙x1

α   + β ∙x2

α   + β ∙x3

α   + …

α   + β ∙xn

Linear Model 



Residuals

𝜀𝑖 =  𝑦𝑖 − ො𝑦𝑖

• Residuals are the difference 
between observed and predicted 
values

• Describes what is not explained 
by the model



Residuals

𝜀𝑖 ~𝑁(0, 𝜎2)

• Variance, 𝜎2, describes the 
variation of observations around 
the regression line

• Standard Deviation, 𝜎, describes 
the average deviation from the 
regression line



Optimize with 
Ordinary Least 
Squares (OLS)


𝑖
𝜀𝑖

2 =  𝛆′𝛆 =


𝑖

𝑌𝑖 − 𝛼 +  𝛽 ∙ 𝑥𝑖
2

= 𝐘 − 𝐗 ∙  𝛽 𝑡  × 𝐘 − 𝐗 ∙  𝛽

Sum Squared 
Residuals in Matrix 
Form

𝜀1 𝜀2 𝜀3  ⋯ 𝜀𝑛  ×

𝜀1
𝜀2 
𝜀3

⋯
𝜀𝑛

4. Fitting a Regression Model

Residuals: 𝜺 = 𝐘 − 𝐗 ×  𝜷

𝑑

𝑑𝛽
𝒀 − 𝐗 ∙  𝛽 𝑡(𝒀 − 𝐗 ∙  𝜷  = −2𝐗𝑡 𝒀 − 𝐗 ∙  𝛽  

−2𝐗𝑡 𝒀 − 𝐗 ∙  𝛽 = 𝟎 

𝐗𝐭𝐘 = 𝐗𝑡𝐗 𝛽 

መ𝛽 = 𝐗t𝐗 −1𝐗t𝐘

Take derivative with respect to β

Set to zero and solve for 

Equation to estimate parameters

Equation to solve for estimated parameters

𝛽



ෝ𝒚 = 𝐗 ×  𝜷

𝜷 = 𝐗𝑡  × 𝐗 −1 ×  𝐗𝑡  × 𝐘

ෝ𝒚 = 𝑿 × 𝐗𝑡  × 𝐗 −1  ×  𝐗𝑡  × 𝐘

ෝ𝒚 = 𝐇 × 𝐘

4. Fitting a Regression Model

H is the hat matrix



𝐼 =
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

Linear Model: Identity Matrix (n x n)

Assumptions: 
• Diagonal elements equal 1 and specify that the variance of each residual is 1 times σ^2
• Off-diagonal elements equal 0 and specify that the covariance between different 

residuals is 0
• Correlations are zero



Linear Model: Variance-Covariance Matrix

𝜎2 𝑿  =
𝜎2 𝑥1 ⋯ 𝜎2 𝑥1, 𝑥𝑛

⋮ ⋱ ⋮
𝜎2 𝑥𝑛, 𝑥1 ⋯ 𝜎2 𝑥𝑛

𝜎2 𝜺  = 𝐶𝑜𝑣

𝜀1
𝜀2

⋮
𝜀𝑛

=  𝜎2𝐼 =
𝜎2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎2



𝒆 = 𝒚 −  ෝ𝒚

𝒆 = 𝒚 − 𝐇 × 𝒀

ෝ𝒚 = 𝐇 × 𝒀

𝜀𝑖  ~ 𝑁 0, 𝜎2  

𝛆~ 𝑁 𝟎, 𝜎2  × 𝐈  

𝒆 = (𝐈 − 𝐇)  × 𝒀

Linear Model: Residuals



Maximum Likelihood Estimation (MLE)

• MLE finds the “best fit” through the data using the log-likelihood function:

ln 𝐿 𝛼, 𝛽1, 𝜎2 = −
𝑛

2
ln 2𝜋𝜎2 −

1

2𝜎2


𝑖=1

𝑛

𝑦𝑖 − ො𝑦𝑖
2

• How? 
• Maximizing the log-likelihood function by minimizing the Sum of Squared Errors: 

𝑆𝑆𝐸 =  

𝑖=1

𝑛

𝑦𝑖 − ො𝑦𝑖
2



How’s the fit?
• Sum of squared errors (SSE) is a 

measure of unexplained variability.

𝑆𝑆𝐸 =  

𝑖=1

𝑛

𝑦𝑖 − ො𝑦𝑖
2



How’s the fit?
• Sum of squares for regression 

(SSR) is a measure of explained 
variability.

𝑆𝑆𝑅 =  

𝑖=1

𝑛

ො𝑦𝑖  −  ത𝑦 2

• Total sum of squares (SST) is a 
measure of total variability.

𝑆𝑆𝑇 =  

𝑖=1

𝑛

𝑦𝑖 − ത𝑦 2

𝑺𝑺𝑻 = 𝑺𝑺𝑹 + 𝑺𝑺𝑬



5. Model Significance

• Model Outputs:
• Test whether the slope of the relationship is zero or not

𝐻0:  𝛽1 = 0 𝐻1:  𝛽1 ≠ 0



5. Model Significance

• Positive 
relationship 
between 
Richness and 
Year

• Strong evidence 
against null 
hypothesis that 
slope = 0



6. Interpreting Results

• Example: Net availability in 
market vs. average annual 
landings (Munguia-Vega et al. 
2020)

• R2=0.744

• p-value = 0.0013



6. Interpreting Results

• Example: Turbidity vs. Total 
Suspended Solids (Mumtaz et 
al., 2011)

• R2 = 0.88

• p-value < 0.05

• Turbidity = 118.08 + 0.832*TSS



6. Interpreting Results

Example: Modelled vs. measured values of TSS and NTU (Prior et al., 2020)



6. Interpreting Results

Example: Modelled vs. 
measured values of TSS 
and NTU (Prior et al., 
2020)

Averaging improves 
accuracy (i.e., higher R2), 
model performance, and 
bias



7. Key Assumptions

• Linear relationship between X 
and Y

• Errors are independent

• Error is normally distributed

• Homoscedasticity (equal 
variance)

https://r.qcbs.ca/workshop08/book-en/intro-linear-
models.html



8. Limitations and Practical Considerations

• Extrapolation issues:
• Difficult to make predictions 

beyond the range of observed 
data

• Influence of outliers:
• Can influence the intercept 

and slope

• Interpretation pitfalls:
• Correlation not causation

https://www.kaggle.com/discussions/general/431681



8. Limitations and Practical Considerations

• Anscombe’s 
Quartet
• Importance of 

visualizing data



Quiz

• Why do we square the errors?
• To account for positive and negative deviations that could potentially 

cancel each other out
• What is the mean value of y when x equals zero?

• The estimate of the intercept
• What is the difference between simple linear regression and linear 

regression?
• Simple linear regression models the relationship between a single X and 

single Y variable.
• Linear regression can model the relationship between a single X and 

multiple Y variables.



Questions?
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